
Sculpting Via Physical Proxy Using Magnets

Michael Margel∗

Abstract

I explore the idea of using magnets and ball bearings as a means of
sculpting a virtual model via a physical proxy. By using a motion
capture system, we can track the position of each bearing, and use
them to build a skeleton, which can then be used to construct a 3D
model. I attempt to implement a system using open source soft-
ware that allows users to manipulate a virtual model by physically
manipulating magnets and ball bearings. While conceptually rather
simple, there were a large number of difficulties that were encoun-
tered, and potential solutions for these issues are explored. Finally,
Liu explored the use of cameras and physical clay in sculpting vir-
tual objects [Liu 2004].

1 Introduction

Cameras that can detect and track fine hand gestures, such as the
Microsoft Kinect and Leap Motion are become much more afford-
able, and as a result, common, than similar systems have been his-
torically. At the same time, there is more research being done into
how the physical properties of clay can be simulated. It is because
of this overlap that I have decided to explore sculpting virtual ob-
jects by using a physical proxy that simulates some of the proper-
ties of clay: magnets. Similar to clay, magnets can be detached and
reattached elsewhere. Magnetic structures can also be built upon
the same way that clay structures can be, by simply adding existing
structures to the current structure.

In this paper, I explore the idea that a motion capture system can
be used to track the magnets and the metal balls that they are at-
tached to in order to develop an interface that can be used to model
virtual clay to determine whether magnets can be used in either
commercial or personal applications, in order to allow people to
create virtual sculptures without necessarily having any significant
experience with computers. I present MagDrop, a program based
on DragDropTool [Schmidt and Singh 2009], a program that can be
used to sculpt models by dragging and dropping different meshes
and by removing and relocating parts of the mesh, in a manner sim-
ilar to clay. MagDrop heavily modifies the interface, and is updated
to allow users to manipulate the mesh with minimal input from a
mouse or keyboard by using a Vicon motion tracking system to de-
termine how the different pieces of the mesh should be moved by
tracking how a user manipulates a physical proxy.

2 Previous Work

There has been very limited work in the field of sculpting via phys-
ical proxy. While a significant amount of work has been done on
simulating clay, there had been very little work on the idea of using
a physical object to represent virtual models. Pihuit et al. explored
the idea of using a haptic device as a way of interacting with virtual

∗e-mail:mmargel@cs.toronto.edu

objects [Pihuit et al. 2008]. Sheng et al. explored the idea of using
a sponge as a physical proxy for clay, where deforming the sponge
would have a similar effect on the virtual clay [Sheng et al. 2006].

3 Equipment

This experiment used a Vicon 6 system with 6 cameras and a set of
standard motion capture markers. Physical models were built us-
ing a Geomag magnetic construction toy, containing 54 magnets,
each approximately 2.5cm long, and 32 metal ball bearings, each
approximately 1cm in diameter. The Vicon iQ and MagDrop soft-
ware were run on a PC running 64-bit Windows 7, with a 3.2GHz
dual core Xeon processor and 4GB of RAM. MagDrop is written
in C++, is based on the DragDropTool source code, and uses the
libgeometry and WildMagic4 libraries.

Figure 1: Arrangement of the Vicon cameras. Cameras 1, 4, and
5 are located above and in front of the user. Cameras 2 and 3 are
located beside and behind the user on the floor. Camera 6 is located
almost directly above the user.

4 System Overview

In this system, 6 Vicon cameras are arranged around a plastic table,
with 3 of them suspended from the ceiling on front of the user, 2
were based on tripods behind and on either side of the user, and 1
was suspended from the ceiling almost directly above the table, as
seen in Figure 1. It’s expected that the cameras can be configured
in any way, as long as the center of the table is always visible to
multiple cameras. To start using the MagDrop software, the user
needs to first build a skeleton of the model that they want to sculpt
using the magnets and ball bearings. Once this is done, the user
must attach motion capture markers to each of the bearings using
some sort of mounting putty.

Once the basic skeleton has been built, the user can use the Vicon



Figure 2: The process pipeline. Shows the physical model (left), the iQ body (center), and the MagDrop skeleton and rendering (right). The
slight discrepancies between the physical and iQ model are due to the viewing angle. The slight discrepancies between the iQ and MagDrop
models are a result of projecting the iQ model into 2D.

iQ software to group the markers into a body. The markers can be
added to the body in any order, but the last marker selected will
compose the ”core” of the virtual model.

After the body has been constructed in iQ, MagDrop can import
the marker data, creating multiple nodes. At this point, the user
must build a skeleton in MagDrop. This skeleton will be used to
render the final model. To join nodes together, the user can click on
a node and drag the mouse to another one. Users can assign a mesh
fragment (part of a previously created mesh) to a node by clicking
on the node and then selecting the mesh fragment from a list.

Users can render the full mesh by pressing the spacebar. The mesh
is rendered by starting at the ”core” node (the last node added to the
body using iQ) and attaching the mesh fragments for all nodes that
are attached to it. These fragments are attached where the ray from
the current node to the base node intersects the mesh. This is done
recursively for all nodes.

If the position of the markers has changed, (e.g. the user moved the
arm of a figure they were modeling), they can press the tilde button
(˜) to update the nodes in the MagDrop software. Pressing the
spacebar again will render the model using the updated positions.

5 Analysis

The results of this experiment were underwhelming. Due to a num-
ber of limitations with the software, as outlined below, it was only
possible to render very crude models, as seen in Figure 2.

The majority of issues were due to issues with the DragDropTool
source code, which the MagDrop software was based on, while
some were due to problems with the hardware and the medium that
was being used for sculpting.

The first issue with DragDropTool is that it was built on libraries
that used features specific to Microsoft Visual Studio 2008, which
were removed in newer versions. As a result, the only compatible
C++ compiler used the C++03 standard. There was no way to use a
compiler that supports the newer C++11 standard, since the Visual
Studio 2008 compiler does not support it, and there is no way to
change the compiler it uses. The main consequence of this was that
the entire program was run in a single thread. As a result, there was
no way to update the model in the MagDrop software in real time.
Attempting to update the model in the same thread that rendered

the model and handled user input would simply cause the program
to freeze. This also caused issues that prevented parts of the mesh
from being rotated, which is discussed in the next section.

The other issues were simply a result of using the DragDropTool
code in a way that it was never intended to be used. DragDrop-
Tool was designed with the intention that there is a single station-
ary mesh, and additional meshes would be added onto it. It was
designed to be used with a mouse as an input device, so most of
the functionality does not work correctly when automated. For
instance, there is no way to reliably scale objects based on the
distance between nodes. The scaling could only be uniform, and
would either scale the mesh fragment before attaching it, which
could cause issues with collision detection, and may not allow the
user to attach the mesh, or after attaching it, which would cause
distortions in the mesh fragment. There was also an issue where
the direction that a mesh fragment should be facing could not con-
sistently be determined. The DragDropTool code would simply use
the normal vector at the point where a mesh fragment is attached as
the up direction for that fragment, and there was no way to use a
custom direction instead.

A final issue that arose from using the DragDropTool code was that
the mesh fragments could not be updated in real time. Instead, users
need to press the spacebar to render the scene and the tilde button
to update the position of the nodes. This is due to performance
issues with DragDropTool, which suffers from lag when trying to
do this, making it unusable. As well, because DragDropTool was
not designed with the intention of being able to move sections of
the mesh without selecting them manually, attempting to automate
the process and update it in real time caused the program to become
incredibly unstable.

As a result of the inability to scale and rotate parts of the mesh, and
the inability to define the ”up” direction for each mesh fragment,
the only models that could be constructed were rather crude.

There were some issues that resulted from using the Vicon system.
The largest of these issues stems from the fact that the Vicon system
is unable to detect any object that is not a retroreflector. In order for
the cameras to properly detect an object, it must either be retrore-
flective or have a retroreflective marker attached to it. Because the
ball bearings used in the Geomag magnet toy are simply steel bear-
ings, the Vicon cameras cannot detect them. As a result, it was
necessary to attach motion tracking markers to the ball bearings.

~


When comparing the position of the bearing to the position of the
marker, there was a discrepancy of approx. 1cm. To accommodate
for this, the model in MagDrop was projected into 2D, to prevent
this discrepancy from having too large of an impact on the model.
It may be possible to avoid this in the future by wrapping the ball
bearings in retroreflective tape. This was not done here due to time
and cost constraints.

6 Limitations

There are some limitations that result from using magnets, which
cannot be avoided. The largest of these is that magnets have discrete
lengths. For instance, every magnet is approximately an inch long.
This means that adjacent bearings will be roughly an inch apart,
with a similar distance between adjacent nodes. While the distance
can be increased by adding more magnets, the distance will always
be in increments of 1 inch. Without buying shorter magnets, it’s
impossible to place bearings at different lengths (e.g. 1.5 inches).
This causes problems when trying to construct a model that requires
parts of the mesh to be placed at different intervals.

Another major limitation was the inability to rotate a mesh fragment
around it’s ”up” axis. This is due primarily to the fact that a magnet
with a ball bearing is symmetric, and there is simply no way for
any camera to detect the rotation by comparing the magnet before
and after the rotation. As a potential workaround multiple markers
could be attached to each node, but this is cumbersome would make
it much harder to control the shape of a model, since the markers
would interfere with the user’s ability to position the magnets. An-
other alternative, which may be more viable, would be to attach
markers to the user’s fingertips (either directly using putty, or onto
a glove that they could wear). The Vicon system could then track
the motion of the user’s had, and determine when the user grabbed a
bearing or magnet, and when they rotated it. This could only work
when the software is multithreaded, but as mentioned above, the
DragDropTool code does not support multithreading, and attempt-
ing to access the Vicon data in real time would cause the software
to freeze.

Another issue with using magnets is the weight of the magnets and
ball bearings. While the magnets seem to weight very little, they
are heavy enough to cause issues with structural integrity. In short
all but the smallest sculptures are too heavy to support themselves,
and will need some other form of support.

7 Conclusion and Outlook

In this experiment, I proposed a new way of sculpting virtual mod-
els by using magnets as a physical proxy. During the course of
developing the MagDrop software, I encountered a large number of
issues that stemmed from the original DragDropTool source code.
These include the inability to update the model skeleton in real
time, the inability to scale objects properly, and the inability to
properly determine the orientation of objects. While these bugs
could be fixed by rewriting significant portions of the code base,
there are other problems that resulted from the magnets themselves,
such as the inability to rotate objects and the fact that the distance
between nodes is in increments of 1 inch. While it should theoreti-
cally be possible to develop software to track the user’s fingers and
determine when they are trying to rotate a magnet, the inability to
place magnets between nodes (instead of at 1 inch intervals) means
that it’s very difficult to get precise placement. This means that
there are some models that might be impossible to build properly
using magnets, simply due to imprecision.

While most of the problems encountered here can be solved by re-
building the entire program from scratch, some of the problems,

such as the scaling and rotation issues, as well as the lack of pre-
cision when positioning nodes, lead me to conclude that magnets
may not be a viable medium to use as a physical proxy. However,
because so many of the problems were caused by the code that was
used to develop this software, I believe that further experimentation
must be done in order to safely draw a conclusion.

References

LIU, X. 2004. Editing Digital Models Using Physical Materi-
als [microform]. Canadian theses. Thesis (M.Sc.)–University of
Toronto.

PIHUIT, A., KRY, P., AND CANI, M.-P. 2008. Hands on vir-
tual clay. In Shape Modeling and Applications, 2008. SMI 2008.
IEEE International Conference on, 267–268.

SCHMIDT, R., AND SINGH, K., 2009. Drag-and-drop surface com-
position. http://papervideos.s3.amazonaws.com/
DragDropSurfComp09.pdf.

SHENG, J., BALAKRISHNAN, R., AND SINGH, K. 2006. An inter-
face for virtual 3d sculpting via physical proxy. In Proceedings
of the 4th International Conference on Computer Graphics and
Interactive Techniques in Australasia and Southeast Asia, ACM,
New York, NY, USA, GRAPHITE ’06, 213–220.

http://papervideos.s3.amazonaws.com/DragDropSurfComp09.pdf
http://papervideos.s3.amazonaws.com/DragDropSurfComp09.pdf

